410 research outputs found

    Arm hand skilled performance in cerebral palsy: activity preferences and their movement components

    Get PDF
    Background: Assessment of arm-hand use is very important in children with cerebral palsy (CP) who encounter arm-hand problems. To determine validity and reliability of new instruments to assess actual performance, a set of standardized test situations including activities of daily living (ADL) is required. This study gives information with which such a set for upper extremity skill research may be fine-tuned, relative to a specific research question. Aim of this study is to a) identify upper extremity related ADL children with CP want to improve on, b) determine the 10 most preferred goals of children with CP, and c) identify movement components of all goals identified. Method: The Canadian Occupational Performance Measure was used to identify upper extremity-related ADL preferences (goals) of 53 children with CP encountering arm-hand problems (mean age 9 +/- 4.5 year). Goals were ranked based on importance attributed to each goal and the number of times a goal was mentioned, resulting in a gross list with goals. Additionally, two studies were performed, i.e. study A to determine the 10 most preferred goals for 3 age groups (2.5-5 years; 6-11 years, 12-19 years), based on the total preference score, and study B to identify movement components, like reaching and grasping, of all goals identified for both the leading and the assisting arm-hand. Results: Seventy-two goals were identified. The 10 most preferred goals differed with age, changing from dressing and leisure-related goals in the youngest children to goals regarding personal care and eating for children aged 6-11 years. The oldest children preferred goals regarding eating, personal care and computer use. The movement components 'positioning', 'reach', 'grasp', and 'hold' were present in most tasks. 'Manipulating' was more important for the leading arm-hand, whereas 'fixating' was more important for the assisting arm-hand. Conclusion: This study gave insight into the preferences regarding ADL children with CP would like to improve on, and the movement components characterizing these activities. This information can be used to create a set of standardized test situations, which can be used to assess the validity and reliability of new measurement instruments to gauge actual arm-hand skilled performance

    Prediction of setup times for an advanced upper limb functional electrical stimulation system

    Get PDF
    Introduction: Rehabilitation devices take time to don, and longer or unpredictable setup time impacts on usage. This paper reports on the development of a model to predict setup time for upper limb functional electrical stimulation. Methods: Participants’ level of impairment (Fugl Meyer-Upper Extremity Scale), function (Action Research Arm Test) and mental status (Mini Mental Scale) were measured. Setup times for each stage of the setup process and total setup times were recorded. A predictive model of setup time was devised using upper limb impairment and task complexity. Results: Six participants with stroke were recruited, mean age 60 (�17) years and mean time since stroke 9.8 (�9.6) years. Mean Fugl Meyer-Upper Extremity score was 31.1 (�6), Action Research Arm Test 10.4 (�7.9) and Mini Mental Scale 26.1 (�2.7). Linear regression analysis showed that upper limb impairment and task complexity most effectively predicted setup time (51% as compared with 39%) (F(2,21) ¼ 12.782, adjusted R2 ¼ 0.506; p<.05). Conclusions: A model to predict setup time based on upper limb impairment and task complexity accounted for 51% of the variation in setup time. Further studies are required to test the model in real-world settings and to identify other contributing factors

    The Armeo Spring as training tool to improve upper limb functionality in multiple sclerosis: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Few research in multiple sclerosis (MS) has focused on physical rehabilitation of upper limb dysfunction, though the latter strongly influences independent performance of activities of daily living. Upper limb rehabilitation technology could hold promise for complementing traditional MS therapy. Consequently, this pilot study aimed to examine the feasibility of an 8-week mechanical-assisted training program for improving upper limb muscle strength and functional capacity in MS patients with evident paresis.</p> <p>Methods</p> <p>A case series was applied, with provision of a training program (3×/week, 30 minutes/session), supplementary on the customary maintaining care, by employing a gravity-supporting exoskeleton apparatus (Armeo Spring). Ten high-level disability MS patients (Expanded Disability Status Scale 7.0-8.5) actively performed task-oriented movements in a virtual real-life-like learning environment with the affected upper limb. Tests were administered before and after training, and at 2-month follow-up. Muscle strength was determined through the Motricity Index and Jamar hand-held dynamometer. Functional capacity was assessed using the TEMPA, Action Research Arm Test (ARAT) and 9-Hole Peg Test (9HPT).</p> <p>Results</p> <p>Muscle strength did not change significantly. Significant gains were particularly found in functional capacity tests. After training completion, TEMPA scores improved (<it>p </it>= 0.02), while a trend towards significance was found for the 9HPT (<it>p </it>= 0.05). At follow-up, the TEMPA as well as ARAT showed greater improvement relative to baseline than after the 8-week intervention period (<it>p </it>= 0.01, <it>p </it>= 0.02 respectively).</p> <p>Conclusions</p> <p>The results of present pilot study suggest that upper limb functionality of high-level disability MS patients can be positively influenced by means of a technology-enhanced physical rehabilitation program.</p

    Wristband accelerometers to motivate arm exercise after stroke (WAVES): study protocol for a pilot randomized controlled trial

    Get PDF
    BACKGROUND: Loss of upper limb function affects up to 85 % of acute stroke patients. Recovery of upper limb function requires regular intensive practise of specific upper limb tasks. To enhance intensity of practice interventions are being developed to encourage patients to undertake self-directed exercise practice. Most interventions do not translate well into everyday activities and stroke patients continue to find it difficult remembering integration of upper limb movements into daily activities. A wrist-worn device has been developed that monitors and provides ‘live’ upper limb activity feedback to remind patients to use their stroke arm in daily activities (The CueS wristband). The aim of this trial is to assess the feasibility of a multi-centre, observer blind, pilot randomised controlled trial of the CueS wristband in clinical stroke services. METHODS/DESIGN: This pilot randomised controlled feasibility trial aims to recruit 60 participants over 15 months from North East England. Participants will be within 3 months of stroke which has caused new reduced upper limb function and will still be receiving therapy. Each participant will be randomised to an intervention or control group. Intervention participants will wear a CueS wristband (between 8 am and 8 pm) providing “live” feedback towards pre-set movement goals through a simple visual display and vibration prompts whilst undertaking a 4-week upper limb therapy programme (reviewed twice weekly by an occupational/physiotherapist). Control participants will also complete the 4-week upper limb therapy programme but will wear a ‘sham’ CueS wristband that monitors upper limb activity but provides no feedback. Outcomes will determine study feasibility in terms of recruitment, retention, adverse events, adherence and collection of descriptive clinical and accelerometer motor performance data at baseline, 4 weeks and 8 weeks. DISCUSSION: The WAVES study will address an important gap in the evidence base by reporting the feasibility of undertaking an evaluation of emerging and affordable technology to encourage impaired upper limb activity after stroke. The study will establish whether the study protocol can be supported by clinical stroke services, thereby informing the design of a future multi-centre randomised controlled trial of clinical and cost-effectiveness. TRIAL REGISTRATION: ISRCTN:82306027. Registered 12 July 2016. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13063-016-1628-2) contains supplementary material, which is available to authorized users

    Search for the standard model Higgs boson at LEP

    Get PDF

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Search for Charged Higgs Bosons in e+e- Collisions at \sqrt{s} = 189 GeV

    Full text link
    A search for pair-produced charged Higgs bosons is performed with the L3 detector at LEP using data collected at a centre-of-mass energy of 188.6 GeV, corresponding to an integrated luminosity of 176.4 pb^-1. Higgs decays into a charm and a strange quark or into a tau lepton and its associated neutrino are considered. The observed events are consistent with the expectations from Standard Model background processes. A lower limit of 65.5 GeV on the charged Higgs mass is derived at 95 % confidence level, independent of the decay branching ratio Br(H^{+/-} -> tau nu)
    corecore